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S IMARY

The two dimensional problem of the interaction of a plans weak

shock wave with a cylindrical obstacle of arbitrary cross section is

considered. An integral equation for the surface values of the poten-

tial is formulated and solved approximately for the case of a square

box vith completely rigid boundaries.

I .



INTODUCTION

This report is concerned with the two diemsiomal problem of the

determination of the pressure and velocity fields resulting from the in-

toraction of a plane weak shock wave with a cylindrical obstacle of arbi-

trary cross section. Such problem have been previously considered and

analytical solutions for a number of simple special geometries have been

found by various techniques.

lThe method of images has been employed to construct a solution for

an infinite plane obstacle (1). Separation of variables has been used for

such simple geometries as the circular cylinder (2). The problem of an in-

finite wedge has been solved by conformal mapping with the use of moomsti•cal

acoustics to determine the proper region of solution (3). This latter pro-

blem has also been solved for the more general case of curved wave fronts

by the use of the appropriate Green's functions (it). Configurations invol-

ving sharp corners are characterised by the fact that these corners act as

centers of diffraction leading to different solutions in different regions

of space-tine. This feature allows the construction of the solution for a

box from that for an infinite wedge but the procedure is impractical for

more than two corners.

Apart from such simple geometries the general problem does not appear

amenable to analytical solution. The use of numerical methods based on

finite differences to solve the differential equations is impractical, even

with large scale computers, because of the three dimensional (two space. one

time) character of the problem and the presence of discontinuities in the

field.

A significant simplification.can be made, however, if the problem is

reformulated in terme of values of the puestset on the surface of the oh-

stacle alone. The spatial dimensions of the problem are reduced from two

0 1'• . ..__ _ _ •'•• •k.. .
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to one and this remsining space dimension, if the obstacle is finite, is

limited In extent. This formulation in particularly suitable for physical

problems which require only a solution on the surface of the obstacle. If

the solution in the field is also desired it can be oonstructed in a strae-ht

forwatid anner from the surface values.

The procedure developed thre tormilates an Intre ral equation v ot the

the pevsv e', at an arbitrary field point in terdf of the initial wave and

an interal of time retarded values of the prsain e and its derivatives

bver the surface of the obstacle. An integral equation on surface values

alone in obtained by allowing the field point to approach the surface of

the obstacle; values throuehout the field e c y be obtained by direct lito-

Station over the surface values.

The effect of the discontinuity In the pressure and the velocity at

the wave front on the surface can be separated from the remainind surface

effects and intesrated directly. The remaining bntegsations fre approximated

by assuming the surface Ipossure .to have an average value over specified

steps in space and timet The integpations are then replaced by cumetions

which, because of the time-retarded effect lead to successive algebraic non.

simultaneous equations an the unknown surface values. The fact that these

equations are not simu1l"Seg" is vital because it permits the use of a

ltrte number of mesh points without prohibitive computationsa

The pressure distribution on the surface of a rigid square box under

a sysmetric plane pulse loading is found by desk computations for time

steps up to one transit time. The portions of the solution corresponding

!•! solution° the Infinite(, wed$* give excellent agreement with the known analytical

Jsolutions
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1. initial - Boundary -. Value PSroblem rormulatLft,

The pressure field that results from the interaction of a plans

acoustic shock with a tco-dimensional obstacle of drbitmnyialpep rlisIdm

and fixed In an acoustic sodium is to be dotetftinod, For the purpose of

anaelysis It in] am*~ convenient to consider a finite cylindrical obstacle of

arbitrary length and of constant cross section rather than a two dimensional

obstacle. The field corresponding to this three dimensional problem is Idea.

tical in every plane section normal to the axis of the cylinder, L.e. inde-

pendent of distance along the axis of the cylinder, for times less than the

propagation time from the ends of the cylinder to the nearest section con-

sidered. Over these time intervals the three dimensional field provides

the desired two dimensional solution. This is a consequence of the hyper-

bolic character of the mave equation which governs the field.

In this three dimensional field, let a cartesian coordinate system

x', y', z' be introduced with the s' axis taken parallel to the generators

of the cylinder. The cross section z' w constant is bounded by an arbitrary

piece-vise smooth curve x' (s), y' (s) where the parameter s is arc length

along the boundary of the cross section (fig. 1 J. At t a 0 the obstacle

is subjected to a plane acoustic shock; the line of contact between the

shock and the obstacle is taken as the a' axis. The incident shock

represents a step in pressure whose magnitude is used to norualise the

pressures which are given as differences from the pressure in the undisturbed

state ahead of the shock. Consequently. the states ahead and behind the

shock at t a 0, correspond respectively to p u 0 and p a 1 thus defining

the initial state.

j� *he method developed in this report is applicable to the more general case
of a non-rigid obstacle; see forthcoming reports.

p



The interaction field may be described In terms of a continuous

velocity potential 9 (x~y~z~t) which satisfies the wave equation and is

related to the pressure through p = + 0ooi$. In terms of 4 the inci-

dent shock is defined by

!f(WAVE) S4 (

where

ebeing the speed of sound and B is the angle between the x axis and the

normal to the incident shock front. This together with the rigid surface

condition - - 0 , n is the normal to the obstacle surface, estab-Sn

lishes the following initial-boundary value problem for C9

D. E. 0 L9 L9P .. 3 ýY- it ptt 0 11

I.C. (o L,•,o { A

0 V +

so Lýs
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Although equations (1.1) specify the problem completely, the form

is not suitable for analysis when dealing with arbitrary shapes. Instead

an equivalent formulation in terms of an integral equation can be developed

which is wore amenable, to further treatment.

2. Integral Equation Formulation.

The Integral equation can be developed by treating the problem as a

characteristic-boundary-value problem in l-dimensional space-time (x,y,,Zt)

to which Green's identity may be applied, rather than as an initial-bound-

ary-value problem. Consider the surface formed by the intersection of the

characteristic hyper-plane representing the incident frzat and the cylin-

drical hyper-surface representing the obstacle, in space-time. The union

of the influence domains of all the points of the surface of intersection

is a domain in l-space exterior to which the "secondary" (disturbance) po-

tential defined by T. = ýf- 9w must vanish. The boundary of this

region consists of reflection and diffraction characteristics. For (P

to be a continuous solution for all (xy,:,t), fs must also vanish on

this boundary.

In addition to the characteristic surface, say 4f(xoyo, 0o1 to),
corresponding to the secondary potential, there exists at any point (x,

yzt), a characteristic half-cone 1' :

These characteristic surface, together with the obstacle surface form a

closed regionVin 4-space whose projection in physical space is exterior

to the obstacle.I
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For the wave operator + 1J3 L

Green's identity takes, the form

where represents conorual differentiation. If now Ar io idestifLed

with q u taken as the progressive wave solution u -1-• . and V. S

correspond to the above mentioned region and bounding surface, the identity

reduces to

S~S 4~ ~ w~)IS'+~ (g~ = (2.1)•-,CL

C £ corresponds to a hyper-cylinder of radius 6 cut out of the region

V to account for the singularity in u at r m 0; S' denotes the surface

of the obstacle plus the surface of the secondary disturbance in 4-space.

For the chosen function u1, the integrals over C can be reduced to

in addition, on that portion of SV corresponding to the secondary front,

and consequently 0 since the frentica characteristic.

on the obstacle surface 1 -- . Hence, eq. (2.1) sLa-

plifies to )

Differentiating both sides twice with respect to t, yields

I e

4W a +•• -++"+

+++ / ,]3+ . ',+.'• , + +•... •. ;•, +••A i m ++ +•++, +. .. .
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Here the 4-space surface integration has been separated into a surface in-

tegration S0  over the Ohysical surface of the obstacle with limits de-

teruined by the intersection of the cone r and the secondary front on

the surface of the obstacle in i-space and a time integration whose upper

limit is the coneT".

The time differentiation may be carried through the S0  integration

since the integrand vanishes along the curves of the intersection; u vanishes

along •, while P s vanishes along the secondary front. Hence

'9' t(2 .2)~

Since the solution function 4) s is uniquely determined by the specifica-

tion of alone, as given by eq. (1.1), It follows that eq.

(2.2) represents an integral equation for

A significant simplifications can be achieved by establishing that

for then eq. (2.2) can be written in terms of the total potential •

icy-4Y- 'M a W 4-1, A3 R 4ito,' ~> (2.4)

1. This can be considered a generalization of the classical Kirchoff's
formula, the latter dealing with a physical space of fixed extent,
i.e. S0 independent of time.

2. An attempt to derive this eq. for 4' directly, would involve consider-
ation of integrals over the characteristic secondary front.

*. An alternate heuristic derivation of this equation by means of Dirac
delta functions is given in Appendix I.
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E,. (2.3) may be verified by extending the definition of or

Sinto a space time region whose projection in physical space is interior

to the obstacle2 by means of a saltus problem. Consider the region 9 in

i-space bounded by the three characteristic surfaces corresponding to the

secondary front, the cone "r and the incident wave front. This region con-

tains an interior boundary, namely the surface of the obstacle. For V con-

sidered as a single region it is possible to define a solution ( which is

discontinuous but whose normal derivative is continuous across the obstacle

surface.

This solution is identical to 4) in V as defined by eq. (2.2) while

it vanishes in the region O-V. That the latter is the correct extension follows

a 49
from the condition = 0 on the incident front and " . 0 on the

obstacle-surface. This in turn implies s - - f) in ý-V. Consequently

Green's identity may be applied to this region with f s and u =- "

Since the field point xyzt is exterior to V-V, eq. (2.3) follows.

Returning to eq. (2.4), let it be differentiated with respect to
t and multiplied by po with a 4 / I no set equal to zero:

;t-. a R

where

and Jot4, 50 are the roots of (b.t'L)- ( -i..) 3a 0

The differentiation may be carried out to yield
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(Y400 VL~ ja+ Wou (2.6)

HereoR xx(8))) (Y'Yo (`))2 +Z2
H) + so that p is independent of s.

Unlike the situation encountered in obtaining eq. (2.3), the integrands of

eq.( 2.5) do not vanish at z- M Zou - z. This gives rise to the last term

in eq. ( 2,6) which involves values of ý and p immediately behind the

wave frost (a. " zou-s) and may be interpreted as the effect on a field point

of the discontinuity in the incident pressure field; it can be evaluated

readily for a given x(s), y(s) since q (zou-z) . 0 and p(zou-z) is known.

Eq. (2.6) can be interpreted as an integral equation for the pres-

sure. Consider its behavior as the field point (x,y) approaches the surface

of the obstacle. The integrands become infinite at the point R = 0. By

considering the behavior of the integrals in the vicinity of this point, it

is readily established (appendix) that these Improper integrals converge in

the ordinary sense. In fact, the ianttibutionwD the double integral from the

immediate vicinity of this point approaches the limit value 1/2 p(x(s), y(s),t).

The remaining portio• from the double integral is finite and in the special

case of the surface point located directly behind the wave front, this contri-

bution vanishes. In this case the single integaL. elI" vanishes. This is

in accord with the well-known results that for the interaction betwees a plane

wave and an arbitrary obstacle, the pressure immediately behind the reflected

wave front on the surface of the obstacle, is just twice the pressure behind

the incident wave.
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Sq. (2.6) may then be wrtten

The procedure employed in solving eq. (2.7) for p(ste) involves the

approximation of the double integration as follows. Let p(st) be assumed
to have a constant mean value over fixed intervals in a and t. Associated

with these intervals are specific regions in s 0 and z T in which p Is constant

In addition let i be reploace shape. ckward difference in time. Then(t 0h

double integral can be approximated by a double yuel-aisn of time retarded

values of p, whose coefficients are integrals of this m etho

over the associated regions in a 0 and zo0. These latter integrals can be

evaluated for a given obstacle shape. With this approximation, eq. (2.7)

can be applied to successive intervals in s, t to yield a set of successive

algebraic equations for the mean values of p. The details of this method

are illustrated in section 3 where a box-shaped obstacle is considered.

Computations have indicated that, since the major contribution to p is

made by the term in eq. (2.7) which can be evaluated exactly, the values of

p(st) obtained in this manner are relatively insensitive to the magnitude

of the fixed intervals (provided 1). It is anticipated that this

will be the case in general.

3. Solution for the Case of a Box-Shaped Obstacle

The specific configuration for which eq. (2.7) has been solved is a

square box whose boundaries are defined by S : x a 0, y a 0P y 8 : ,

So: x = a. The direction of motion of the incident wave is chosen for

'j'



convenience of syimetry, to be such that the normal to the front coincides

with a diagonal of the square, I.. • , /4 (fig. t ). Tn this case sq.

(2.7) takes the form

The spmbol i refers to the surface Si containing the point s, at which
i

the pressure is p . Si is not included in the in~tegrations since the ex-

presionscontinin vanish for a surface of constant curvature (ap-

pedi U). In the expression for Dij , the term pJ is equal to the con-

staet two for j - 1, 2 and is equal to zero for j = 3, ii (see appefndix H).

The regions of integration in so, z° on each surface are determined by the

00

ellIips es:

with the restructions that for u a, u is set equal to a and for

o1 s y' m ol is set equal to zero.

The double integrli is approximated by assuming pr ('at) to hive the

constant value P li (t- vaisf) over the space-time cnteal (k-c1ur vatu<k ia

t -1 (to (t - J• +1). The time derivative Ž•2 is approximated by a back-
* t

wards difference in time, p~k (t-t+l)- P~k (t - ). ore points so swept

over by the incident front within the time interval being considered, the de-

rivativ is replaced by pw(to)-2 for j = 1, 2 or pia(to)-o for .(s ,e . The

integration may then be replaced by a double sdtation over k and b in

which the coefficients of Pth (to) are known integrals.

It is also convenient to modify slightly the reginos of integration in

osa in order to reduce the ber of coefficients of P(k that need to

be computed. For this purpose, the regions of interation are approximated bya

0 a t 0
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with the previous restrictions on **us so, still valid and PJk being d0dined

as zero in the region exterior to the ellipses t - a o//1. , e - a/Il *
I.e. ahead of the vrove front. She coefficients obtained in this sianner are

In fact the sanes for any orientation of the Incident front relative to the

box.

It then follows that the approximate systesm to be solved Is given by&

Z 4 tP

7R1 jai 9wI k-

+ M 1 •frL (tI]• ("M (2.7)

I b

3 ~fasJ I '

over point k betoeen t-I and t-•4-1 ; otherwise

, 1if itF- XX06- 0 *-333,Ij

IAL

S~where P is the number of space intervals per side.
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At each tine step t and space point* a on 8L eq. (2.7) relates

p* (t) to values of p corresponding to earlier times. Hence as previously

indicated the system of equations obtained are successive rather than simul-

taneous. Only at the corners do two adjacent space points have an opportuni-

ty to interact within a single time interval. Consequently, at each corner, at

each time step there occur two simultaneous equations. The numerical results

obtained for the choice of eight space steps on each side of the box and

sixteen time steps corresponding to one transit time are listed in tables I

and I1 and figs. (3,t ).

1. Discussion of Results.

In the case of the box, the solution in certain regions of space-

time may be identified with known solutions obtained by geometric acoustics

(3]. For example, for t ý al/ the solution alongS 1,2 coincides with the

solution for an infinite wedge of vertex angle %/2 formed by Sl" Conse-

quently the results for S1,2 for the first eight time steps may be compared

with the analytic solution given in [3]. Since in this case the solution

depends only upon , Y, a comparison of values at all time steps may be

made simultaneously and the convergence of the values for increasing time

may be examined. The results for the eighth time step are plotted along with

the exact solution in fig. ( 3 ) and the agreement is excellenti the

greatest error is less than 3%.

A further estimate of the accuracy of the numerical solution may

be gained by a comparison with the rigid box solution given in ref. (51.

Again the agreement is excellent.

*The field point is taGen in the center of the space Interval at -Mr

___

S- -."';.• • •- -•v'• '•, ,,/- ,



Examination of fig.( 4 ) indicate that the steady state solu-

tion of p. I everywhere appears to be approached rapidly even within the

interval of one transit time.

I K
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TABLE o0 VALUES ON FRONT FACE Or RIGID MO

UNDER S NxETRIC PULSE: P(t),

t

I 1.40

2 1.38 2.00

3 1.34 1.55 2.00

4 1.32 1.38 1.67 2.00

5 1.36 1.35 1.50 1.88 2.00

6 1.34 1.12 1.38 1.64 2.00 2.00

7 1.33 1.36 1.45 1.44 1.73 2.00 2.00

8 1.34 1.38 1.39 1.18 1.53 1.83 2.00 2.00

9 1•34 1.35 1.141 1.4•. 1.51 1.65 2.00 1.87

10 1.34 1.36 1.40 1.43 1.47 1.51 1.75 1.62

11 1.35 1.35 1.38 1.39 1.47 1.52 1.36 1.33

12 1.34 1.36 1.37 1.40 1.12 1.39 1.24 1.12

13 ,1.34 1.35 1.37 1.37 1.41 1.24 1.15 1.06

14 1.34 1.35 1.37 1.39 1.25 1.18 1.o0. 1.09

15 1.34 1.35 1.36 1.26 1.22 1.05 1.10 1.07

16 1.34 1.35 1.31 1.21 1.07 1.09 1.05 1.03

1 2 3 4 5 6 7 8

141

_B. 4'

4' 0, ,•,
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TABLS OF VALU•S ON REAR SURFACE OF RIGID 30

"UNDER saDETaIC PUWLS

9 0.49

10 0.93

11 1.17 o.63

12 1.20 0.89 0.53

13 1.07 0.94 0.62 0.07

14, 1.O4 1.03 0.83 0.46

15 1.00 0.98 0.92 0.70 0.36

16 0.99 0.93 0.86 0.79 0.59 0.24

9 10 11 12 13 14 15 16

a9

A I

t'a
* 45

- - I i •"lf J g tl m t• - • d I •
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Appendix I

Introduce the fundamental solution to the three dimensional wave equation

R
which satisfies

where R - I - Pi , - (x,yz) a field point, V'. 1 ,. )

a source point and & is the Dira delta function in one, three or four dimen-

sions as required.

The secondary "disturbance" potential 4 " - -afalso satisfies

the wave equation

•4J =-0 at t= 0
vith initial conditions: =

Consequently the following equation is true

VON)

where V0 (4) is a four dimensional volume in space time and the right hand
side is 4s y* if the point ; 0 ro, t = to is included in VW and 0

0

if it is not.

Two different regions of integration are employed. They are both bounded

by the initial time plane to - 0, the incident wave plane ipA400rp.Jthe

obstacle surface extended into space time and a surface which will include the

characteristic cone (t-to)-R a 0 in the volume of integration. Duo to the

singular behavior of the integrand, all contributions coae from the surface

(tm-to)-R a 0 within the region of integration. One region of integration isiitaken exterior to and the other interior to the obstacle surface.
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Consider first, for either reiom V(4 the tw etine

totee

since g and vanish for every value of t to and a and

a rebothOst t O.

The remainder of the integral is

by Green's Theorem where S 0is the surface bounding the physical space

volume of integration V(3) and no is the outward normal to So.

0

Adding the two integrals corresponding to these two regions of integra-

tion will give an equation on A )(i t ) in terms of a discontinuity in Qs

across the obstacle surface since the normal, n 0  is opposite in sign in the

two integrations.

t 4 a r 4v

where [ ] represents the discontinuity value and +n' is taken toward the

interior of the obstacle in physical space.

Since q W is continuous, the discontinuity in f$ mut be identical

to the discontinuity in ?9. As seen in the text, the interior value of

is zero and the discontinuity in I Is therefore just the value ismediately ex-

terior to the obstacle surface.

tt+6Zi _ _ s
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Because of the behavior of So the time integration can be taken thru

the surface integration and carried out givingq . ( 2.'d).

Appendix 1I-a

The immediate neighborhood of a point on any curved surface may be con-

sidered plane as an approximation which becomes exact as the neighborhood

shrinks to the point. To find the pressure field at a point immediately

behind the wave front on an obstacle surface, it is therefore sufficient to

consider the interaction of the wave front with an infinite plane obstacle.

The result - obtained will of course be equally useful in the specific ex-

ample of the square box for the two planes which compose the "front" of the

box. The integral equation is still valid but now is applied only to S1

As F approaches a point on S1 , x approaches zero. Hovever, . *11a
mat also approach zero except at the indeterminate point R - O i.e. the

location of the field point on the surface. To avoid this indeterminary

the point R w 0 is removed from the integration by distorting the surface

in the seighborhood of R = 0 from a plane to a semisphere of radius p

about -0. Over this surface P,-* A. . The integration is then in

two parts; the semisphere and the reminder of the plane surface. The

-latter integration is zero since is zero and the former Intega.

I]_ tion is
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tgIR-*O b-•'

since in the limit, the term. 1)0V ) and ca(F,,) n be removed

from the integration and evaluated at to - t, R w 0.

4A.CF t•'•,r) to It X c

Appendix Il-b

Behind the wave front on each of the rear surfaces of the square box

exists a region in space time which is not influenced by any of the corners

of the box. The integrations required to determine the pressure in these

regions from Eq. ( 'X. 7 ) are then taken only over the neighboring front

surface with values for p on that surface corresponding to the infinite

plane solution. For example., consider a point on surface i =

'(Ft 1) + a.. CI *SS & ~it.I }X,

with integration limits given by

The term iBj is left in integral form for convenience.

rO __________

The.S-
,i~.I R,
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where the limits of integration are the roots of

- (AYJa - YO) x

This follows from the fact that 1461. must be greater than zero while

you must be less than a in order that the ends of the front surface (i.e.

corners) will not play any role in the integration.

The double integral is reduced to a single integral.

v.. , Lo AL1- g4 -V -/

IT cYO LVL+t b/
Al

Combining this integral with the term 2. S gives

4 (YO lJL %__

YO X+o (.0V, L.,,-.)') !*.- )%.(-Y.O)-xj

-z
. p3 . 2- 2 =0

The region in which this solution will be valid on the rear surface

S3 is t (x ý(t/ /E from t ý x corresponding to a-y0 > 0 and

x <•t/ /5 limiting points to those behind the wave front.

- -! !-
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Appendix III

The expressions for the BO obtained by integration are given below

together with the conditions under which each expression is valid. These con-

ditions are obtained from the limits in the integral expressions for the 10

and may be interpreted in terms of geometric acoustic theory as representing

the diffraction effects produced by the corners of the box.

)IR
~B = 11"

7. rJ t +;y,

____ ""
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0t L
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£ollmill syCtr0o1llos

IL

L. 
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t2

i4
The coefficients .% (t*%) and .must satisfy the

following sy~mmetry conditions.

C % 
2.

%' '4

(Gf4 u L'.) V4kL(i)



and a similar set for .A t,)where X or Y g 2l and p is

the number of steps in space per side.

Therefore only, four sets of coefficients need be computed for each

value of m. The integral expressions for the coefficients are simplified

by using a constant average value in place of R over each region of inte-

gration. As R can never be zero on any of the surfaces of integration and

is practically constant over all separate regions of integration except those

near the corners this approximation is quite good. Values near the corners

must be obtained without this approximation.

"44 C L • 4 -1

i. C -

L) '7F

------ % ,LA

LrL (kL-Y*) _r-A q

16I

* j k'-y.,,'-,.,,-,IV ..4J

,,, 'L 0 L4
* Yi ii- 4ii ii ) ii~ A ii ,. 16



-26-

Appendix IV

It is of .interest to note that the pressure at the corner of

an infinite rigid wedge of arbitrary angle 0< may be found exactly from

the integral equation

d? , + 1

Since is zero on both surfaces for a field point at the corner

r a the only contribution comes from the point R = 0 as in appendix

0(
Ha although only a portion 9--Y of the semi-sphere is required to

exclude the corner point from the surface of integration in this case.

2~-AV

which is an agreement with the known infinite rigid wedge solution,

=

-1-p- ci

_I
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